Several devices in natural systems perform their functions by responding to an effect f by a signal \tilde{f}. Each device or system of this type can be represented by an operator A that transforms an input signal f into an output signal \tilde{f}, which is equal to $A f$. Naturally, each operator has its own area of perceived signals (the operator domain) and its own form of response (the codomain). A convenient mathematical model for a large class of real processes is a linear shift operator A, which is translation-invariant.
A is said to be invariant under translations (or translation invariant) if, for any function f from the domain of operator A, there exists an equality

$$
\begin{aligned}
& A\left(T_{t 0} f\right)=T(A f), \text { while } \\
& (T f) \times(t)=f\left(t-t_{0}\right)
\end{aligned}
$$

If t is time, the ratio $A T=T A$ can be interpreted as suggesting that the properties of device A are constant over time; the device response to the $f(t)$ and $f(t-t)$ signals would differ by a temporal shift only.

There are essentially two main objectives in using device A :

1. To anticipate the device response \tilde{f} to an arbitrary input process f, and
2. To determine the input signal f entering the device using an output \tilde{f} signal.

Let us consider the solution of the former problem using the invariant linear translation operator A. To describe the response of device A to any input f, it is sufficient to know the response E of device A to an impulse input δ.

The $E(t)$ response to a single impulse input δ is called a device instrument function (or a slit function in optics or unitimpulse response function in electrical engineering). Generally, the function E may be a generalized function. It is defined as a function that renders the δ function under the action of the operator A, and it can be called a fundamental solution, or

SIDEBAR FIGURE 1: DISCRETE IMPULSE. This simulation becomes more accurate as the impulse's duration changes over time. Green's function, or the influence function, or the instrument function of the operator A.

The discrete impulse can be represented, for instance, by a function shown in sidebar Figure 1 , and this simulation becomes more accurate as the impulse's duration α changes over time with its total energy $\alpha \frac{1}{\alpha}=1$ being preserved.

Instead of step functions, you can use smooth functions to
simulate the impulse (sidebar Figure 2), providing certain natural conditions are met:

$$
f \geq 0 \quad \int_{R} f(t) d t=1 \quad \int_{U} f(t) d t \rightarrow 0
$$

SIDEBAR FIGURE 2: SMOOTH FUNCTIONS TO SIMULATE IMPULSE

$$
\text { with } \alpha \rightarrow 0
$$

where U is a random neighborhood of $t=0$.
The device A response to an idealized unique impulse δ should be regarded as a function $E(t)$. The device A responses are approaching $E(t)$ as the simulation is improving δ. Naturally, this implies a certain continuity of the operator A - that is, the continuity of change in the device response \tilde{f} with a continuous change of the input f.

For example, by taking the sequence $\Delta_{n}(t)$ of step functions $\Delta_{n}(t)=\delta_{n}(t)$ (sidebar Figure 3), and assuming that $A \Delta_{n}(t)=$ E_{n}, we should obtain:

$$
A \delta=E=\lim _{n \rightarrow \infty} E_{n}=\lim _{n \rightarrow \infty} A \Delta_{n}
$$

Now, let us consider the input signal f (sidebar Figure 3) and the piecewise constant function shown in the same figure.

Since $l_{h} \rightarrow 0$ as $h \rightarrow 0$, we may assume that

$$
\tilde{l}_{h}=A l_{h} \rightarrow A f=\tilde{f} \quad \text { as } \quad h \rightarrow 0
$$

But if the operator A is linear and invariant to translations, then

$$
\tilde{l}_{h}(t)=\Sigma f\left(\boldsymbol{\tau}_{i}\right) E_{h}\left(t-\boldsymbol{\tau}_{i}\right) h
$$

where $E_{h}=A \delta_{n}$.
Thus, as $h \rightarrow 0$, we should finally obtain

$$
\begin{equation*}
\widetilde{f}(t)=\int_{R} f(\tau) E(t-\tau) d \tau \tag{1}
\end{equation*}
$$

Equation (1) solves the first of the two problems mentioned. It represents the device A response $\tilde{f}(t)$ in the form of a special integral that depends on the parameter t. This integral function is fully determined by the input signal $f(t)$ and the instrument function $E(t)$ of device A.

From a mathematical viewpoint, device A and the integral (1) are the same thing. The problem of determining the input signal using the output is now reduced to a solution of the integral equation(1). This isknown as the Fredholm integral equation of the first kind.

SIDEBAR FIGURE 3: THE CONTINUITY OF CHANGE

